H.T.No).
--------	----

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. I Year I Semester Supplementary Examinations June/July-2025 ENGINEERING PHYSICS

(Common to CE & AGE)

Time: 3 Hours

(Answer all Five Units $5 \times 12 = 60$ Marks)	(Answer all	Five	Units 5	x 12	= 60 Marks)
--	-------------	------	---------	------	-------------

Max. Marks: 60

UNIT-I

		UNIT-L				
1	a	Describe the formation of Newton's ring with necessary theory with	CO1	L1	9M	
		relevant diagram and derive the expressions for dark and bright fringes.				
	b	In a Newton's rings experiment, the diameter of the 5 th ring is 0.30 cm	CO1	L2	3M	
		and the diameter of the 15 th ring is 0.62 cm. Calculate the diameter of the				
		25 th ring.				
		OR				
2	a	Define diffraction grating and explain about construction of diffraction	CO2	L2	8M	
	L	grating.	CON	1.0	43.5	
	U	Define following terms i. Grating spectrum ii. Grating element.	CO2	L2	4M	
2	-	UNIT-II Show that ECC is mostly along the last to the DCC 1900	000	T 4		
3		Show that FCC is mostly closed packed structure than BCC and SC.	CO2		8M	
	U	Find the ratiod100:d110: d111 for a simple cubic structure. OR	CO2	L5	4M	
4	я	Illuatrate the principle, procedure and advantage of Debye-Scherrer	CO2	L3	8M	
		(Powder method) of X-ray diffraction.	001	LJ	OIVI	
	b	Define coordination number and atomic packing factor.	CO2	L2	4M	
		UNIT-III				
5	a	Define following terms	CO3	L2	6M	
		(i) Reverberation (ii) Absorption coefficient (iii) Pitch and Loudness of				
		sound.				
	b	Derive Sabine's formula for reverberation time? Mention factors	CO3	L4	6M	
		controlling the reverberation time.				
		OR				
6		Explain thee properties of Ultrasonic waves.	CO4	L2	6M 6M	
	b					
_		UNIT-IV				
7		Derive the relation between different elastic moduli.	CO4	L4	8M	
	b	What is Hooke's law? Explain.	CO4	L2	4M	
0	~	OR	604	1.2		
8		Illustrate different types of supports. Define	CO4		6M	
	IJ	i) Rigidity Modulus ii) Poisson's ratio.	CO4	L2	6M	
		UNIT-V				
9	я	Differentiate DC and AC Josephson effects in superconductors.	CO5	L4	6M	
,		Explain the properties of Superconductors.	CO5	L4 L2	6M	
	~	OR	005	115	0141	
10	a		CO5	L2	6M	
		nanomaterials.			U.I.L	
	b	Explain ball milling technique for the synthesis of nanomaterial.	CO5	L2	6M	
		*** END ***				

49 R20 H.T.No.

		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY	:: PUT	TUR	
	В.	(AUTONOMOUS) Tech. I Year I Semester Supplementary Examinations Jur APPLIED PHYSICS	ie/Jul	y-202	25
Tin	ne:	3 Hours (Common to CSE, CSIT, CSM, CIC, CAD, CCC & CSI) (Answer all Five Units 5 x 12 = 60 Marks)	Max.	Mark	s: 60
1	a	UNIT-I Discuss the theory of interference of light due to thin films by reflection with a suitable ray diagram.	CO 1	L1	6M
	b	Derive the condition for bright and dark fringe interference in the case of thin films by reflected light.	CO 1	L4	6M
		OR			
2		In the study of Fraunhofer diffraction due to single slit how the diffraction fringes formed.		L2	4M
	b	Obtain conditions for principal maxima, minima and secondary maxima in single slit diffraction pattern and draw its intensity distribution curves.	CO 1	L2	8M
3		Define the following terms: i) Drift Velocity (ii) Mean free path. Derive an expression for electrical conductivity in a metal by quantum free electron theory.	CO2 CO2	L1 L4	4M 8M
		OR			
4		Explain the formation of energy bands in solids. Classify the solids into conductor, semiconductor & insulators based on band theory of solids.	CO2 CO2	L2 L2	4M 8M
_		UNIT-III			
5		Explain population inversion. Describe the construction and working principle of He-Ne Laser with the help of a neat diagram.	CO3 CO3	L2 L2	4M 8M
		OR			
6	a	What is the numerical aperture of an optical fibre and derive an expression for it.	CO3	L1	8M
	b	Calculate the numerical aperture and acceptance angle of an optical fibre of core refractive index 1.58 and cladding refractive index of 1.52.	CO3	L3	4 M
7	a	What is Fermi level? Prove that the Fermi level is lies exactly in between conduction band and valance band of intrinsic semiconductor.	CO 4	L1	6M
	b	Determine the energy band gap of the intrinsic semiconductor OR	CO4	L3	6M
8		Describe the Hall Effect in semiconductors. What are the applications of Hall Effect.	CO4 CO4	L2 L1	8M 4M
9	a	What is Meissner effect? Explain how Superconductors are behaving like a Diamagnetic material.	C05	L2	6M
	b	Explain the Type-I and Type-II superconductors. OR	C05	L2	6M
10	a b	What are nanomaterials? Write the classification of nanomaterials. Explain magnetic and optical properties of nanomaterials. *** END ***	CO5 CO5	L1 L2	6M 6M

O.P.Code:	20HS0802
------------------	----------

H.T.No	
--------	--

0.	
----	--

	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOG	Y:: PUT	TUR	
	(AUTONOMOUS) B.Tech. I Year I Semester Supplementary Examinations Ju	ne/Jul	y-202	25
	APPLIED CHEMISTRY (Common to ECE & EEE)			
Tim	e: 3 Hours N	Iax. Ma	arks: (60
	(Answer all Five Units 5 x 12 = 60 Marks) UNIT-I			
1	a Define Electrochemical cell? Explain the construction, working of an Electrochemical cell.	CO1	L1	6M
	b Write a short note on Ni-cd (NICAD) battery.	CO1	L2	6M
	OR		_	
2	Define Fuel cell? Describe the construction and working principle and uses of Hydrogen-Oxygen fuel cell.	CO 1	L2	12M
	UNIT-II			
3	a Write the postulates of molecular orbital theory.	CO2	L2	6M
	b Sketch the molecular orbital energy diagram for Oxygen (O ₂).	CO2	L3	6M
	OR			
4	a Explain Planck's quantum theory.	CO2	L2	6M
	b Write short notes on wave-particle duality of matter.	CO2	L2	6M
5	a Define polymerization? Explain chain growth and step growth	CO3	L2	8M
	polymerization with examples.b Write the preparation and application of Buna-S rubber.	CO3	L3	4M
	OR	005	LS	4HIVIL
6	a Describe the preparation, properties and uses of Bakelite.	CO3	L3	8M
•	b Explain functionality of monomer.	CO3	L2	4M
	UNIT-IV			
7	Explain principle, instrumentation and applications of UV-visible	CO 4	L2	12M
	spectroscopy with neatdiagram.			
	OR			
8	a Explain the principle and instrumentation of Gas Chromatography.	CO4	L2	8M
	b Write any four applications of Gas Chromatography.	CO 4	L2	4M
	UNIT-V			
9	a Define super conductors.	CO5	L1	2M
	b Discuss about the principle and application of Super conductors and	CO5	L1	10M
	their applications?			
10	OR What is basic look and key principle?	COF	Т 1	(M
10	a What is basic lock and key principle?b Write a short note on Complementarity.	CO5 CO5	L1 L2	6M 6M
	b Write a short note on Complementarity.	005		6M

H.T.No.

		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY	:: PUT	ΓUR	
	_	(AUTONOMOUS)	. – .	_	_
	B .'	Tech. I Year I Semester Supplementary Examinations Jun	ne/Jul	y-20	25
		ENGINEERING CHEMISTRY (Mechanical Engineering)			
Tin	ıe:	3 Hours	Max.	Marl	s: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks)			
		UNIT-I			
1		Explain with a neat sketch the various steps involved in Municipal	CO1	L2	12M
		Water Treatment.			
		OR			
2	a	Explain about desalination of brackish water by Reverse Osmosis.	CO1	L2	6M
	b	Explain in detail about demineralization of water by Electrodialysis.	CO1	L2	6M
		UNIT-II			
3	9	What is secondary Battery? Write a note on Lithium Ion Battery	CO2	L1	6M
5		Describe the Construction and Working of Methanol– OxygenFuelcell.	CO2	LI L3	6M
	U	OR	002	113	UIVI
4	9	Define corrosion.	CO2	L 1	2M
-		Describe the oxidation corrosion with relevant chemical equation	CO2	L1 L2	10M
	U	involved.	COL		IUNI
		UNIT-III			
=	-	210.00	CO 2	т 1	3N <i>T</i>
5		What is polymerization?	CO3	L1	2M
	D	Explain the different types of polymerization with examples.	CO3	L2	10M
(OR	CO2	1.2	
6		Explain the Proximate analysis of coal with its significance.	CO3	L2	6M
	D	Discuss the ultimate analysis of coal and mention its importance.	CO3	L2	6M
		UNIT-IV			
7		Define composites.	CO4	L2	2M
	b	· 1	CO 4	L2	10M
		OR	~~ .		
8		What is cement? How do you classify the cement?	CO4	L1	6M
	b	Explain in detail about setting and hardening of portland cement.	CO 4	L2	6M
		UNIT-V			
9	a	Describe the synthetic method of colloids by Condensation process.	CO5	L2	6M
	b	Explain the synthesis of colloids by Dispersion Method.	CO5	L2	6M
		OR			
10		Discuss the principle, instrumentation and applications of Transmission	CO5	L2	12M
		Electron Microscopy.			
		*** END ***			

 $\dot{\mathbf{e}}$

		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)	(:: PUT	TUR	
	B	Tech. I Year I Semester Supplementary Examinations Jun C PROGRAMMING AND DATA STRUCTURES		ly-20	25
Ті	ne	(Common to CE, AGE, CSE, CSIT, CSM, CIC, CAD, CCC & CA : 3 Hours		Marl	cs: 60
111	ne	(Answer all Five Units $5 \times 12 = 60$ Marks)	max.	mair	15. 00
		UNIT-I			
1	a	Define a variable. Write the variable declaration. What are the rules for declaring a variable?	CO 1	L2	6M
	b	Explain about data types in C.	CO1	L2	6M
		OR			
2		Write the syntax and illustrate the following statements with example i) if Statement	CO2	L3	12M
		ii) if else Statement			
		iii) else if ladder			
		iv) Nested if statements			
		v) Switch Case			
		UNIT-II			
3		Define function. Explain the types of functions with an example.	CO3	L1	6M
	b	Write a C program to swap two numbers using functions. OR	CO3	L3	6M
4	a	Examine the types of storage class available in C.	CO3	L2	6M
	b	Describe about type qualifiers used in C.	CO2	L2	6M
_		UNIT-III			
5		Explain the concept of array of pointers with examples.	CO3	L2	8M
	b	What are the features of pointers? Write a C program to print address of a variable.	CO3	L6	4M
		OR			
6	a	Explain about pointers to structure.	CO3	L2	6M
	b	Explain about nested structures.	CO3	L2	6M
		UNIT-IV			
7	a	Differentiate between stack and queue	CO5	L4	6M
	b	Explain briefly about various types of linked lists with suitable	CO6	L2	6M
		examples.			
		OR			
8		Explain briefly about circular linked list and circular double linked list with suitable example.	CO6	L2	12M
		UNIT-V			
9		Discuss the algorithm to sort the elements using exchange sort. OR	CO6	L2	12M
10		Define sorting. Explain any three sorting techniques with example. *** END ***	CO6	L1	12M

ŝ

			1
2	\mathbf{O}	$\mathbf{\Omega}$	
•	2	U	

5	ſ
	H.T.No.

0.	O.P.Code: 20ME0353 R20 H.T.No.					
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech. I Year I Semester Supplementary Examinations June/July-2025					
		THERMAL AND FLUID ENGINEERING	ne, ou	ly-20	40	
		(Electrical & Electronics Engineering)				
111	ne	: 3 Hours (Answer all Five Units $5 \times 12 = 60$ Marks)	Max.	Mark	ts: 60	
		UNIT-I				
1		Explain briefly about cooling towers and Coal handling with neat	CO1	L1	1214	
1		diagram.	COI	LI	12M	
2		OR Describe in detail about Quasi Static Process with schematic diagram.	CO2	L1	6M	
2		What is thermodynamic equilibrium? Explain it in detail.	CO2		6M	
	U			1/1	UIVI	
3		Draw and explain a P.V, P-T and T-S diagram for a pure substance.	CO2	L2	12M	
5		OR	002		12111	
4		Explain Lamont boiler with neat sketch.	CO3	L2	12M	
		UNIT-III				
5		What is manometer and classify it.? Explain U tube manometer with	CO5	L1	12M	
		neat diagram.				
		OR				
6		Derive an expression for capillary rise and fall in a glass tube	CO 4	L3	6M	
	b	The capillary rise in the glass tube is not to exceed 0.2mm of water.	CO5	L5	6 M	
		Determine its minimum size, given that surface tension for water in				
		contact with air = 0.0725 N/m.				
_		UNIT-IV	~~ <			
7		Explain about Energy gradient line and Hydraulic gradient line.	CO6	L2	12M	
8		OR Derive an equation for Darcy Weisbach equation.	C05	L3	12M	
0		UNIT-V	CUS	13	12111	
9	a	A jet of water of diameter 7.5cm moving with a velocity of 25m/s,	CO5	L5	6M	
	a	strikes a fixed plate in such a way that the angle between thejet and plate	005	LJ	UIVI	
		is 60° . Find the force extracted by Jet				
		(i) in the direction normal to the plate.				
		(ii) in the direction of jet.				
	b	A jet of 50 mm diameter delivers a stream of water at 20 m/s	CO5	L3	6M	
		perpendicular to a plate that moves away from the jet 5 m/s. Find the				
		force on the plate, work done and efficiency of jet.				
		OR		_ .		
10		Draw the neat sketch of Modern Francis turbine and explain its working.	CO6	L1	12M	
		*** END ***				

Time: 3 Hours

R20 || H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech. I Year I Semester Supplementary Examinations June/July-2025 BASIC ELECTRICAL & ELECTRONICS ENGINEERING

(Mechanical Enbgineering)

Max. Marks: 60

L1

5M

CO1

*Note: Answer PART-A from pages 2 to 20 and PART-B from 21 to 39.

(Answer all Six Units 6 X 10 = 60 Marks)

PART-A UNIT-I

- 1 a State and explain Ohm's law.
 - b For the given circuit as shown in figure find the voltage across 10 ohm CO1 L2 5M resistor and the current passing through it.

		OR			
2		Explain principle of AC voltages with neat diagram and waveform.	CO1	L2	10M
3		UNIT-II Write the constructional features of a DC machine with neat diagram.	CO2	L2	10M
-		OR			
4		Explain Long Shunt Compound Generator and short shunt generator with neat diagram.	CO2	L2	10M
		UNIT-III			
_	-		CON	1.2	<i>5</i> 3 <i>4</i>
5		Discuss about the principle of operation of DC motors	CO3	L2	5M
	b	Calculate the value of torque established by the armature of a 4-pole DC	CO3	L3	5 M
		motor having 774 conductors, 2 paths in parallel, 24mwb flux per pole when the total armature current is 50A.			
		OR			
6		Briefly discuss about various types of DC motors with neat sketches.	CO3	L2	10M
U		PART-B	COS		TOIVI
		UNIT-IV			
7	a	Define Doping and explain about P-and N-type semiconductors	CO5	L2	5M
		Explain in detail about diffusion current.	CO5	L2	5M
		OR	000		U III
8		Explain the working principle of Bridge Rectifier with neat circuit	CO5	L2	10M
0		diagram. Also draw its input and output waveforms	005		IUNI
		UNIT-V			
9		With neat diagram, explain the Input and Output characteristics of a BJT	CO5	L2	10M
		in CB Configuration			
		OR			
10		Explain the Fixed Bias of a BJT with a neat diagram.	CO5	L2	10M
		UNIT-VI			
11		Describe the working principle of N-channel JFET.	CO6	L2	10M
		OR	-		
12		With the help of neat diagram, explain the operation and characteristics of	CO6	L3	10M
		N-channel Depletion type MOSFET under Enhancement mode		<u> </u>	
		*** END ***			

0.	P.	Code: 20CE0101 R20 H.T.No.						
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)							
	B	.Tech. I Year I Semester Supplementary Examinations Ju	ne/Ju	ly-20	25			
Tir	ne	ENGINEERING MATERIALS (Civil Engineering) : 3 Hours (Answer all Five Units 5 x 12 = 60 Marks)	Max	. Marl	<u>xs: 60</u>			
1		List the types of defects in clay bricks. Explain briefly on each defect.	CO1	L3	12M			
-		OR	COI	13	12111			
2	a	Write the various uses of stones.	CO 1	L2	6M			
	b	List the characteristics of good building stones.	CO1	L2	6M			
		UNIT-II						
3	a	What are the initial and final setting times of cement? What is their importance?	CO2	L1	6M			
	b	What precautions should be taken while storing cement?	CO2	L1	6M			
		OR						
4		What is meant by workability of concrete? How is it tested in field and	CO2	L4	12M			
		in laboratory?						
5		Describe in details the types of defects in paint works.	CO3	L2	12M			
		OR						
6	a	State the characteristics of good timber.	CO3	L2	6M			
	b	What are dry and wet rots? How are they caused and prevented?	CO3	L2	6M			
		UNIT-IV						
7		Specify some important uses of cast iron, wrought iron and mild steel.	CO 4	L1	12M			
0		OR	604	10	1035			
8		What are smart materials? Explain their applications in civil engineering field?	CO4	L3	12M			
		UNIT-V						
9		What are the various types of bitumen and what are their uses.	C05	L1	12M			
,		OR	003	1.1	14191			
10		Describe the penetration test on bitumen.	CO5	L2	12M			
		*** END ***						

H.T	`.N
-----	------------

	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR						
	(AUTONOMOUS) B.Tech. I Year I Semester Supplementary Examinations June/July-2025 BASIC THERMODYNAMICS						
Ti	me	(Agricultural Engineering) : 3 Hours	Max.	Marl	cs: 60		
		(Answer all Five Units $5 \times 12 = 60$ Marks)					
		UNIT-I					
1	a	What do mean by property? Distinguish between intensive and extensive property	CO1	L1	6M		
	b	Show that work is a path function and not a property.	CO1	L2	6M		
		OR					
2		Explain about Work and Heat transfer. And classify the work transfers.	CO1	L4	12M		
		UNIT-II					
3		What is Steady Flow Process? Derive Steady Flow Energy Equation	CO2	L4	12M		
		(SFEE) for an open system.					
		OR					
4	a	Give are the limitations of the First law of Thermodynamics?	CO2	L2	6M		
	b	Derive an expression for entropy changes for open systems.	CO2	L4	6M		
		UNIT-III					
5		Derive the equation for computing the entropy change of an Ideal gas.	CO3	L4	12M		
		OR					
6		Derive the equation for work done in a reversible adiabatic process.	CO3	L4	12M		
		UNIT-IV					
7		Deduce an expression for Carnot Cycle and efficiency of cycle.	CO4	L4	12M		
		OR					
8		Develop the expression for air standard efficiency for sterling cycle.	CO 4	L4	12M		
		UNIT-V					
9		Describe the different operations of Rankine cycle and also derive the	CO5	L4	12M		
		expression for its efficiency.					
		OR					
10	a	Compare Rankine cycle with Carnot cycle.	CO5	L4	6M		
	b	Explain with the help of neat diagram of Reheat cycle and Draw its T-S	CO5	L2	6M		
		& H-S diagram.					

Page 1 of 2

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

R20

B.Tech. I Year I Semester Supplementary Examinations June/July-2025 ENGINEERING GRAPHICS

(Common to ECE, ME & EEE)

Time: 3 Hours

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

1 The vertex of a hyperbola is 60 mm from its focus. Draw the curve, if CO1 L4 12M the eccentricity is 3/2. Draw a normal and a tangent at a point on the curve, 75 mm from the directrix.

OR

2 Develop the involute of a circle of side diameter 50 mm. Draw a tangent CO1 L6 12M and normal to the curve at a distance of 100 mm from the center of the circle.

UNIT-II

3 A point A is 20mm above the HP and 50mm in front of the VP. Another CO2 L3 12M point B is 40mm below the HP and 15mm behind the VP. The distance between the projectors of the points, measured parallel to xy, is 75mm. Draw the projections of the points. Draw lines joining their Front views and Top views.

OR

A line PQ 80mm long has its end P 10mm above HP and 15mm in front of CO2 L3 12M
VP. The other end Q is 65mm above HP and 50mm in front of VP. Draw
the projections of the line and Find its true inclinations with HP & VP.

UNIT-III

5 A regular hexagonal plane of 30 mm side has a corner on HP, and its CO3 L3 12M surface is inclined at 45° to HP. Draw the projections, when the diagonal through the corner, which is on HP makes 30° with VP.

OR

6 A cylinder of base diameter 5mm and axis 70 mm has a generator CO3 L3 12M in the VP and inclined at 45° to the HP. Draw its projections.

UNIT-IV

7 A cube of side 40 mm is resting on HP on one of its faces, with a vertical **CO4 L6 12M** face inclined at 30° to VP. It is cut by a section plane inclined at 45° to HP and passing through the axis at 8 mm from the top surface. Draw the projections of the solid and also show the true shape of the section.

OR

8 A square prism of side of base 40 mm and axis 80 mm long, is resting on CO4 L3 12M its base on HP such that, a rectangular face of it is parallel to VP. Draw the development of the prism.

H.T.No.

Max. Marks: 60

UNIT-V

9 Draw three views of the blocks shown pictorially in figure according CO5 L3 12M to first angle projection.

OR

10 Draw the isometric projection of the frustum of a hexagonal pyramid of CO5 L3 12M base side 40 mm, top side 25mm, and height 70mm rests with its base on HP with one of its base edge is parallel to VP.

H.T.No.

	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)						
	в.	Tech. I Year I Semester Supplementary Examinations Jur BASIC ELECTRONICS ENGINEERING (Common to CSE,CSM, CAD, CAI, CCC, CSIT & CIC)	ne/Jul	y-202	25		
Tin	ne:	3 Hours (Answer all Five Units 5 x 12 = 60 Marks) UNIT-I	Max.	Mark	s: 60		
1		Compare and contrast the electrical properties of Silicon and Germanium.		L2	8M		
	b	What is meant by doping in semiconductors? What is the need for doping?	CO1	L2	4M		
		OR					
2	a	Distinguish between conductors, semiconductors and insulators.	CO1	L2	8M		
	b	Explain the crystal structure of silicon with a neat sketch.	CO1	L2	4M		
		UNIT-II					
3	a	Analyze the current components in a PN diode and derive the expression for diode current.	CO1	L4	8M		
	b	Define and discuss the barrier potential of a PN junction diode with a neat sketch.	CO1	L2	4M		
		OR					
4	a	Discuss about Breakdown mechanisms in PN Junction Diode.	CO1	L2	6M		
	b	Define Transition and Diffusion capacitances of a PN junction Diode.	CO1	L2	6M		
5	a	Draw the circuit diagram of a Full wave rectifier and with the help of	CO3	L2	6M		
		waveforms describe its operation.					
	b	Derive the expressions for Average DC current, Average DC Voltage, RMS	CO2	L3	6M		
		Value of Current, DC Power Output, AC Power input and Efficiency of a Full Wave Rectifier.			0112		
		OR					
6	a	Explain the construction and working principle of CLC or π section filter along with derivation for its ripple factor.	CO3	L3	8M		
	b	Compare various types of filters.	CO3	L2	4 M		
7	a	Discuss about the different types of biasing.	CO2	L2	6M		
	b	Design the circuit shown in figure given Q-point values are to be $I_{CQ} = 1 \text{ mA}$	CO6	L4	6M		
		and $V_{CEQ} = 6V$. Assume that $V_{CC} = 10V$, $\beta = 100$, $V_{BEsat} = 0.7 V$.	000	LŦ	UNI		
		R _B ≸ ≸R _C					

		OR			
8	a	Explain the Input and Output characteristics of a BJT in CC Configuration.	CO1	L2	6M
	b	Derive the relation between α , β and Υ of a Transistor.	CO2	L3	6M
		UNIT-V			
9	a	Explain the construction and working principle of N-channel JFET.	CO4	L2	6M
	b	List the differences between depletion and enhancement MOSFET.	CO4	L2	6M
		OR			
10	a	Derive the Drain to Source resistance, Trans-conductance and amplification	CO4	L4	6M
		factor from Characteristics of JFET.			
	b	Discuss the merits of the voltage divider bias.	CO6	L2	6M
		*** END ***			

2 84

ł

÷ .

H.T.N	C
-------	---

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. I Year I Semester Supplementary Examinations June/July-2025 **PRINCIPLES OF ELECTRICAL CIRCUITS**

(Electronics and Communications Engineering)

Time: 3 Hours

1

4

ne	: 3 Hours	Max.	Marks:	60
	(Answer all Five Units $5 \times 12 = 60$ Marks)			
	UNIT-I			
a	State and explain Ohm's law with limitations.	CO1	L2	6M
_				

b State and prove Kirchhoff's voltage law with suitable examples. **CO1** L3 **3M** c State and prove Kirchhoff's current law with suitable examples. **CO1** L3 **3M**

OR

2 Find the voltage to be applied across AB in order to drive a current of **CO1** L3 **12M** 5A into the circuit.

- 3 a State & explain Thevenin's theorem. **CO3 L1 4M** b Find load current by using Thevenin's theorem for the following circuit CO3 **L3 8M**
- where RL $=3\Omega$.

- OR
- a State & explain Milliman's theorem. **CO3**
- **b** Find the current IL, use millman's theorem as shown in figure below. **CO3** L3 **6M**

a A series RC circuit consists of a resistor of 10Ω and capacitor of 0.1 F CO4 5 L4 **6M** with a constant voltage of 20v, is applied to the circuit at t=0.Obtain the current equation. Determine the voltage across the resistor and the capacitor.

L3

6M

				1.1	÷.
	b	Define the term initial conditions and transient response. OR	CO4	`L2	6M
6		A Series RC circuit consists of $R=5000\Omega$, $C=20MF$ has a constant voltage V=100v applied at t=0 and capacitor has no initial charge. Find the equation of i, VR and VC.	CO4	L4	12M
7	•	Define power factor and form factor.	CO5	L2	6M
7	-	Derive an expression for the current and impedance for a series RL	CO5	L2 L2	6M
	b	circuit excited by a Sinusoidally alternating voltage. Draw the phasor diagrams.	05	1.1.4	UNI
		OR			
8		Derive an expression for the voltage and impedance for a series RLC	CO5	L4	12M
		circuit excited by a Sinusoidally alternating voltage.			
9	a	Determine the y-parameters of the following network.	CO6	L4	6M
	b	Find the transmission parameters for the circuit shown in figure. $1 \stackrel{1\Omega}{\longrightarrow} 12 \stackrel{2\Omega}{\longleftarrow} 12 \stackrel{12}{\longleftarrow} 20 \stackrel{12}{\longrightarrow} 12 \stackrel{12}{\longleftarrow} 20 \stackrel{12}{\longleftarrow} 12 \stackrel{12}{\longleftarrow$	CO6	L2	6M
		1 ¹ • • 2 ¹			
10		OR	000	10	43.4
10		List the advantage of constant K filter.	CO6	L2	4M
	D	Design a High –pass filter having a cut-off frequency of 1kHz with a	CO6	L2	8M
		load resistance of 600Ω . *** END ***			

O.P.Code: 20HSO830

H.T.No. **R20**

Page 1 of 2

8	a	If $\overline{f} = (x + 2y + az)\vec{i} + (bx - 3y - z)\vec{j} + (4x + cy + 2z)\vec{k}$ is irrotational then find the constants <i>a</i> , <i>b</i> and <i>c</i> .	CO 4	L3	6M
	b	Prove that $div(curl \bar{f}) = 0$ where \bar{f} is vector point function.	CO 4	L3	6M
		UNIT-V			
9	a	Find the work done by a force $\overline{F} = (2y+3)\vec{i} + (xz)\vec{j} + (yz-x)\vec{k}$			
		when it moves a particle from $(0,0,0)to(2,1,1)$ along the curve $x = 2t^2$; $y = t$; $z = t^3$	CO5	L3	6M
		x - 2t; $y - c$; $z - c$			
	b	Evaluate by Green's theorem $\oint_c (y - sinx)dx + cosxdy$ where 'c' is	CO5	L2	6M
		the triangle enclosed by the lines $y = 0$, $x = \frac{\pi}{2}$ and $\pi y = 2x$.			
		OR			
10		Verify Gauss's divergence theorem for $\vec{F} = (x^3 - yz)\vec{i} - 2x^2y\vec{j} + z\vec{k}$			

taken over the surface of the cube bounded by the planes x = y = z = a CO5 L3 12M and coordinate planes.

*** END ***

OR

H.T.No. **O.P.Code: 20HS0810 R20** (AUTONOMOUS) **COMMUNICATIVE ENGLISH** (ECE,EEE & ME) **Time: 3 Hours** (Answer all Five Units $5 \times 12 = 60$ Marks)

> When a bee collects nectar from a flower, pollen sticks to its body. As it moves from flower to flower, it spreads this pollen, helping plants to reproduce. Without bees, the pollination of fruits, vegetables, and nuts would decrease significantly, leading to lower food production. In recent years, scientists have become concerned about the declining bee population. Pesticides, loss of habitat, and disease are some of the main threats to bees.

> To protect bees, people are planting more wildflowers, reducing pesticide use, and creating environments that support bee health. These efforts are essential to ensure that bees continue to help produce the food we eat every day.

Questions

1. What is the main role of honeybees described in the passage?

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

B.Tech I Year F Semester Supplementary Examinations June-2025

		UNIT-I			
1	a	Bring out the central theme of the story "Half a Rupee Worth."	CO1	L1	6M
	b	What is the structure of a paragraph?	CO1	L1	6M
-		OR			
2		Write a paragraph on The Role of Festivals in Society.	CO 1	L3	6M
	b	Write a letter to your friend describing the recent Ahmedabad plane crash incident.	CO1	L3	6M
		UNIT-II			
3	a	Why was Gangi unable to get water from anywhere when the story opens?	CO2	L2	6M
	b	Fill in the blanks with suitable articles:	CO2	L2	6M
		i. We met old friend at the mall.			
		ii Amazon River is one of the longest rivers in the world.			
		iii. Can you hand me pen, please?			
		iv. They adopted dog from the shelter.			
		v. I need umbrella. It's raining.			
		vi sun rises in the east.			
		OR			
4		Frame six sentences with cohesive devices.	CO2	L3	6M
	b	How does Self-confidence help an individual in achieving success?	CO2	L2	6M
5	a	How does the poem "I am not that Woman" bring out the hidden potential and rebellion spirit of the speaker?	CO3	L2	6M
	b	What is emotional intelligence and how does it affect the work efficiency of an individual?	CO3	L2	6M
		OR			
6	a	Read the following passage and answer the question given below.	CO3	L2	6M
		Honeybees are small insects, but they play a big role in nature and agriculture. They help pollinate many of the plants we rely on for food. When a bee collects nectar from a flower pollen sticks to its body. As it			

Max. Marks: 60

A) Producing honey for humans B) Helping plants grow by pollination C) Attacking pests in gardens D) Spreading seeds 2. What happens when a bee visits a flower? A) It damages the flower's petals B) It drinks the flower's water C) It spreads pollen to help the plant reproduce D) It lays eggs in the flower 3. Which of the following is NOT mentioned as a threat to bees? A) Pesticides B) Weather changes C) Loss of habitat D) Disease 4. Why is it important to protect bees? A) Because they live in beautiful hives B) So they can pollinate flowers and help produce food C) To reduce honey imports D) To keep parks clean 5. What is one way people are helping bees? A) Using more chemical sprays B) Removing wildflowers D) Catching bees in nets C) Reducing pesticide use 6) Provide a title for the given passage. **b** Describe the types of listening. **CO3 L1 6M UNIT-IV** a Write an essay about your opinion on dowry as a social evil with a **CO4** L3 **6M** 7 special reference to Sarada's marriage from the story What is my name?

b Study the information given in the pie chart (about students' favourite CO4 subjects) and write your interpretation.

Favorite Subject

OR

8	a	Write any six meaningful sentences using Quantifiers.	CO4	L3	6M
	b	Write a paragraph on comparing and contrasting summer season with	CO4	L3	6M
		winter season.			
		UNIT-V			
9	a	Write a short note on Short term and Long term goals.	CO5	L1	6M
	b	What kind of life did Kalam's father lead as in the essay "The Power of	CO5	L1	6M
		Prayer"?			
		OR			
10	a	Write an essay on The Mental Health Crisis Among Youth in the Digital	CO5	L3	6M
		Era			
	b	What is the difference between Scanning and Skimming?	CO5	L1	6M

*** END ***

L3

6M

O.P.Code: 20EE0250

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR
(AUTONOMOUS)

H.T.No.

B.Tech I Year I Semester Supplementary Examinations June 2025 PRINCIPLES OF ELECTRICAL ENGINEERING (CSE,CSIT,CSM,CIC,CAD,CCC,CAI)

Time: 3 Hours

(Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I

Max. Marks: 60

- 1 a State and explain Kirchhoff's laws.
 - COI L2 6M b Verify Superposition Theorem for 4Ω resistor for the following circuit. CO1 L3 6M

R20

a State and explain Norton's Theorem. 2 CO1 L2 **6**M **b** Use KCL to find node voltages for the circuit shown below. CO1 L3 6M

and a fear

UNIT-II	
age value of sine wave	form.

3	a	- infreshold for avoinge value of sine wave form.	CO2	L3	6M	
	b	A resistor of 25Ω and inductance of 60 mH are connected in series across	CO2	L3	6M	
		100V, 50Hz supply. Determine the following				
		(i) Impedance (ii) power factor				
		OR				
4	a	An alternating current is expressed as $I = 14.14 \sin 314t$. Determine.	CO2	L3	6M	
		(i) Maximum current (ii) RMS current (iii) Frequency (iv) Instantaneous				
		current when $t = 0.02$ msec				
	b	Derive an expression for the current and impedance for a series RC	CO2	L4	6M	
		circuit excited by a Sinusoidally alternating voltage. Draw the phasor				
		diagrams.				
		UNIT-III				
5	Ez	cplain about the Working principle of a DC generator.	CO3	L3	12M	
		OR				
6	a	A 220V DC motor has armature resistance of 0.6 Ω and current through	CO3	L2	6M	
		armature is 10A. Find the induced in the motor.				
	b	Explain OCC Characteristics of DC generator.	CO3	L3	6M	

UNIT-IV

7	Explain the Working principle of single phase transformer.	CO4	L3	12M	
	OR				
8	a A single phase transformer has 500 turns on primary and 1000 turns on	CO4	L3	6M	
	secondary. The E.M.F per turn is 0.2. Calculate				
	i) E.M.F induced in the primary and secondary winding.				
	ii) The net cross-sectional are of the core for a maximum flux density of				
	0.045T				
	b Write the short notes on transformer Voltage Regulation & Efficiency.	CO4	L2	6M	
	UNIT-V				
9	a Classify different types of measuring instruments.	CO5	L2	6M	
	b Explain operating principles of Moving Iron and PMMC instruments.	CO5	L3	6M	
	OR				
10	Define torque. Explain various types of torques in measuring instruments.	CO5	L3	12M	
_0					

